



## FOUNDATION PLANT SERVICES at UC DAVIS and the RUSSELL RANCH NATIONAL COLLECTION Deborah Golino, Director, FPS



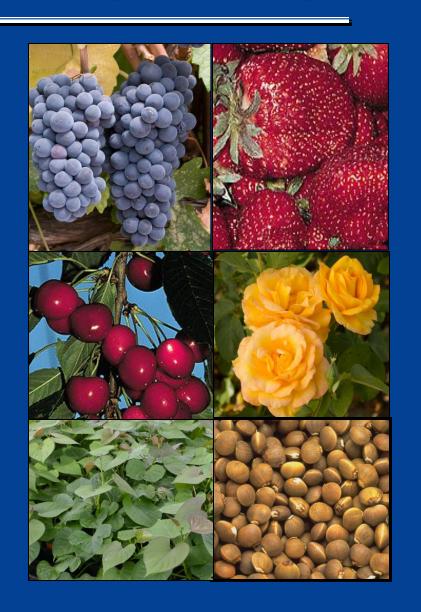
# Foundation Plant Services UCDAVIS

### **Foundation Plant Services:**

- Produces, tests, maintains and distributes elite disease-tested plant propagation material
- Provides plant importation and quarantine services, virus testing and elimination
- Coordinates release of UC patented horticultural varieties
- Links researchers, nurseries, and producers

## **CROP PROGRAMS AT FPS**

**⋈** Grape


**&** Strawberry

& Tree

**& Rose** 

**⊗**Sweet potato

**& Pistachio** 





#### **GRAPES**

# CALIFORNIA REGISTRATION & CERTIFICATION PROGRAMS



**FRUIT & NUT TREES** 



**STRAWBERRIES** 





# Why do you need clean plant material?



#### New Grape Selection

- Foreign imports
- Domestic selections
- New varieties

Retesting

Disease Testing Tests
positive

Disease Elimination Therapy

- Tissue culture
- Heat treatment

All tests negative

#### **FOUNDATION**

Provisional Foundation vines

**Professional Identification** 

ID not correct

Remove

ID verified correct

Registered Foundation vines

To Nurseries and Growers

# **FPS Target Grapevine Diseases**



**Grapevine Degeneration** 

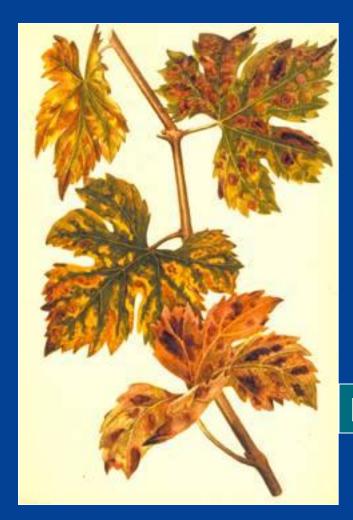
Fanleaf

**Grapevine Decline** 

➤ Tomato Ringspot Virus
Leafroll



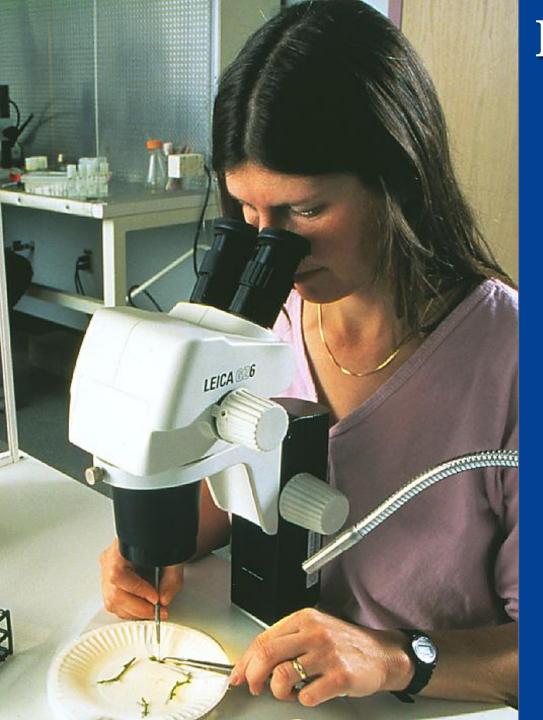
- Kober Stem Grooving
- Corky Bark
- LN33 Stem Grooving
- Rupestris Stem Pitting


Fleck Minor Viruses








# THE DANGERS OF SAMSONITE IMPORTATION





PPV on nectarine

Pierce's Disease



# MICROSHOOT TIP CULTURE







#### Process Description: Grapevine Importation through Foundation Plant Services, UC Davis (Simplified) YEAR 2 YEAR 5 YEAR 6 YEAR 7 YEAR 8 YEAR 9 YEAR 0 YEAR 1 YEAR 3 YEAR 4 Customer submits Service Request Form to FPS and identifies supplier. Supplier collects wood ships it to APHIS, Beltsville, MD number and Plant ID numbers. Plant in Professional California Separate Propagate Growing oundation Identification Registered Canes into 2 APHIS Vineyard Bundles Grow and Material Evaluate and plants to screenhouse for growing Available CDFA Test Results Canes for authorize release LAB TEST LAB TEST LAB TEST LAB TEST Visual Visual Keep 4 plants in ELISA for nepoviruses, fleck, Repeated, Spring, PCR and ELISA Fall Inspection ELISA for Inspection esting, ELISA fo Index Presumptive Tissue Growing Culture Grow ID index Evaluat Test Results and and Growing Growina CDFA Train Trunk/ LAB TEST Note: The green arrow represents a best case Tests positive scenario in which a grape introduction tests negative LAB TEST ELISA Repeated, Spring, Visual LAB TEST ELISA Visual Inspection Fall for all viruses and establishes rapidly in the vineyard. outcome. PCR and ELISA The purple arrows represent best case scenarios in which tissue culture treatment successfully eliminates virus and the vine establishes rapidly in the vineyard. Propagated Plants Available Propagated Plants Available Read Fall Tissue Culture Growing APHIS Grow ID Evaluate Test Results and and Growing Growing **CDFA** Train LAB TEST Tests positive LAB TEST ELISA LAB TEST ELISA Repeated, Spring, outcome. PCR and ELISA

# EVOLUTION OF DIAGNOSTICS AT FOUNDATION PLANT SERVICES

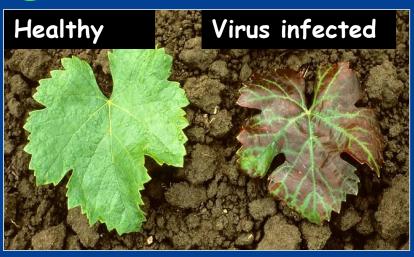
## **Biological indexing**

### Herbaceous testing








- 1. Chenopodium amaranticolor
- 2. C. quinoa
- 3. Cucumis sativus
- 4. Nicotiana benthamiana
- 5. N. clevelandii
- 6. N. occidentalis

# **Biological indexing**

## Field indexing







| Woody indicator | Disease                                            |
|-----------------|----------------------------------------------------|
| St. George      | Fanleaf, Rupestris Stem Pitting Virus, Fleck Virus |
| Cabernet franc  | Leafroll viruses                                   |
| LN-33           | Corky Bark                                         |
| Kober 5BB       | Stem Grooving                                      |

## Serological techniques: ELISA

Since early 1990s
 Nepoviruses (GFLV, ToRSV)



### Leafrolls

- Yr 2000 added Arabis Mosaic Virus (ArMV)
- Most antibodies are produced at FPS

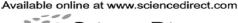
# Molecular techniques Conventional RT-PCR

- •1993 Fanleaf and Leafrolls
- Currently FPS has developed and validated assays for 34 grapevine pathogens



MagMAX-96






# Molecular techniques qPCR (real-time quantitative PCR)

- Started using in 2001
- Able to run more samples faster than ELISA and conventional PCR
- •qPCR is more than 300 times more sensitive than conventional PCR

• Currently is the routine detection method at

**FPS** 





Journal of Virological Methods 141 (2007) 22-29



Real-time RT-PCR (TaqMan<sup>®</sup>) assays for the detection of Grapevine Leafroll associated viruses 1–5 and 9

Fatima Osman<sup>a</sup>, Christian Leutenegger<sup>b</sup>, Deborah Golino<sup>a</sup>, Adib Rowhani<sup>a,\*</sup>

### PROTOCOL 2010 TESTS

|                  | INOTOGOL                                          |           |        |      |     |            |            |
|------------------|---------------------------------------------------|-----------|--------|------|-----|------------|------------|
| Group            | Pathogen                                          | Symbols   | ELISA  | qPCR | PCR | Herb. Ind. | Woody Ind. |
| Nepoviruses      | Grapvine fanleaf virus                            | GFLV      | ٧      | ٧    | ٧   | ٧          | St. George |
|                  | Tomato ringspot virus                             | ToRSV     | ٧      | ٧    | ٧   | ٧          |            |
|                  | Tobacco ringspot virus                            | TRSV      |        | ٧    | ٧   | ٧          |            |
|                  | Arabis mosaic virus                               | ArMV      | ٧      |      | ٧   | ٧          |            |
|                  | Strawberry latent ringspot virus                  | SLRSV     |        |      | ٧   | ٧          |            |
|                  | Blueberry leaf mottle virus                       | BLMV      |        |      | ٧   | ٧          |            |
|                  | Raspberry ringspot virus                          | RpRSV     |        |      | ٧   | ٧          |            |
|                  | Tomato black ring virus                           | TBRV      |        |      | ٧   | ٧          |            |
|                  | Grapevine deformation virus                       | GDefV     |        |      | ٧   | ٧          |            |
|                  | Artichoke Italian latent virus                    | AILV      |        |      | ٧   | ٧          |            |
| Closteroviruses  | Grapevine leafroll associated virus 1             | GLRaV-1   | ٧      | ٧    | ٧   |            | Cab. Franc |
|                  | Grapevine leafroll associated virus 2             | GLRaV-2   | ٧      | ٧    | ٧   |            | Cab. Franc |
|                  | Grapevine leafroll associated virus 2RG           | GLRaV-2RG |        | ٧    | ٧   |            |            |
|                  | Grapevine leafroll associated virus 3             | GLRaV-3   | ٧      | ٧    | ٧   |            | Cab. Franc |
|                  | Grapevine leafroll associated virus 4             | GLRaV-4   | √ gen. | ٧    | ٧   |            | Cab. Franc |
|                  | Grapevine leafroll associated virus 4 strain 5    | GLRaV-5   | √ gen. | ٧    | V   |            | Cab. Franc |
|                  | Grapevine leafroll associated virus 4 strain 6    | GLRaV-6   | √ gen. |      | ٧   |            | Cab. Franc |
|                  | Grapevine leafroll associated virus 7             | GLRaV-7   |        | ٧    | ٧   |            | Cab. Franc |
|                  | Grapevine leafroll associated virus 4 strain 9    | GLRaV-9   | √ gen. | ٧    | ٧   |            | Cab. Franc |
|                  | Grapevine leafroll associated virus 4 strain 10   | GLRaV-10  |        | ٧    | ٧   |            | Cab. Franc |
|                  | Grapevine leafroll associated virus 4 strain 11   | GLRaV-11  |        |      | ٧   |            | Cab. Franc |
|                  | Grapevine leafroll-associated virus 4 strain Car. | GLRaCV    | √ gen. | ٧    | ٧   |            | Cab. Franc |
| Vitiviruses      | Grapevine virus A                                 | GVA       |        | ٧    | ٧   |            | Kober 5BB  |
|                  | Grapevine virus B                                 | GVB       |        | ٧    | V   |            |            |
|                  | Grapevine virus D                                 | GVD       |        | ٧    | V   |            |            |
|                  | Grapevine virus E                                 | GVE       |        | ٧    |     |            |            |
| Foveavirus       | Grapevine rupestris stempitting associated        | GRSPaV    |        | ٧    | ٧   |            | St. G.     |
|                  | virus (all strains)                               |           |        |      |     |            |            |
| Maculavirus      | Grapevine fleck virus                             | GFkV      | ٧      | ٧    | ٧   |            | St. G.     |
|                  | Grapevine redglobe virus                          | GRGV      |        |      | ٧   |            |            |
| Marafiviruses    | Grapevine syrah virus-1                           | GSyV-1    |        | ٧    | ٧   |            |            |
|                  | Grapevine vein feathering virus                   | GVFV      |        |      | V   |            |            |
|                  | Grapevine asteroid mosaic virus                   | GAMV      |        |      | V   |            |            |
| Phytoplasma      | Universal detection                               | Phyto     |        |      | ٧   |            |            |
| Pierce's Disease | Xylella fastidiosa                                | PD        |        | ٧    | ٧   |            |            |
|                  |                                                   |           |        |      |     |            |            |

# Next Generation Sequencing (NGS)

## Why use NGS technologies?

- Rapid, accurate and efficient
- Detects all nucleic acids (RNA and DNA)
   in an organism
   Hiseq
- Known and unknown viruses



Hiseq 2000, Illumina



Genome Sequencer FLX system, Roche

Virology 387 (2009) 395-401

Contents lists available at ScienceDirect

#### Virology

journal homepage: www.elsevier.com/locate/yviro

Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus

M. Al Rwahnih, S. Daubert, D. Golino, A. Rowhani \*

Department of Plant Pathology, University of California, Davis, CA 95616, USA

# NGS is like a FULL BODY SCANNER



# Is Red Blotch a new disease?

#### **UC Davis Center for Plant Diversity/ Herbarium**

- The Herbarium has over 300,000 dead plants called herbarium specimens.
- Each specimen consists of a flattened and dried plant glued onto an archival paper with a label.
- The label has specimen data: cultivar, place, date and the collector name.







# The herbarium has few un-mounted grape samples from Yolo County





#### **Example of a specimen records**



#### Consortium of California Herbaria

Participants

News

Search

Help



#### **Accession Detail Results**

#### UCD is the home institution for this record

Please cite data retrieved from this page: Data provided by the participants of the Consortium of California Herbaria (ucjeps.berkeley.edu/consortium/; Fri Oct 31 15:16:31 2014).

Records are made available under the CCH Data Use Terms.

| Specimen number                       | UCD17955                                                         |
|---------------------------------------|------------------------------------------------------------------|
| Determination                         | Vitis vinifera More information: Jepson Online Interchange       |
| Collector, number, date               | H. Olmo, s.n., 08 11 1940                                        |
| County                                | Fresno                                                           |
| Locality                              | Wahtoke Vineyard in Sanger                                       |
| Coordinates                           | 36.7042 -119.5553 BerkeleyMapper [or without layers, here]       |
| Datum                                 | WGS84; ER = 3.612 km                                             |
| Coordinate source                     | Geolocate (copied from UCD17950)                                 |
| Annotations and/or curatorial actions | Vitis vinifera L. cv. Murocain 2010-10-06 Original determination |

#### Sample collection

- Fifty six grapevine specimens were collected (Approximately 0.5 g of leaf/petiole tissue).
- specimens were originally harvested and pressed between 1937-1950.
- Pieces of foil containing each sample were placed in individual Ziplock bags to prevent cross contamination.
- The 56 sample bags were transported to a lab in which research on grapevine had NOT previously been conducted.

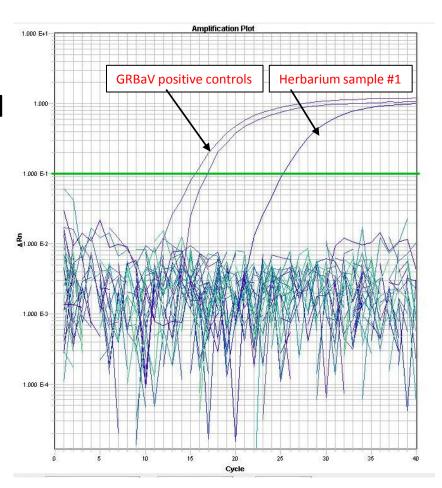


Sample collection in the herbarium

#### List of samples- Group 1: Vitis cultivars from Napa or Sonoma County

|          |               |                                      |                   | Year of    |           |                      |
|----------|---------------|--------------------------------------|-------------------|------------|-----------|----------------------|
| Sample # | Herbarium ID# | Variety/cultivar                     | Location (County) | collection | Collector | Tissue               |
|          |               | Vitis vinifera L. cultivar Early     |                   |            |           |                      |
| 1        | DAV202170     | Burgundy                             | Sonoma            | 1940       | H. Olmo   | Leaves               |
|          |               | Vitis vinifera L. cultivar aff. Napa |                   |            |           |                      |
| 2        | DAV202866     | Gamay                                | Napa              | 1939-1940  | H. Olmo   | Leaves               |
|          |               | Vitis vinifera L. cultivar Petite    |                   |            |           |                      |
| 3        | DAV202172     | Bouschet                             | Sonoma            | 1937       | H. Olmo   | Leaves               |
| 4        | DAV202202     | Vitis vinifera L. cultivar Rosetta   | Sonoma            | 1938?      | H. Olmo   | Leaves and petioles  |
| 5        | DAV202196     | Vitis vinifera L. cultivar Zinfandel | Napa              | 1935       | H. Olmo   | Leaves and petioles  |
|          |               | Vitis vinifera L. cultivar Black     |                   |            |           |                      |
| 6        | DAV202174     | Malvoisie                            | Sonoma            | 1935       | H. Olmo   | Leaves and petioles  |
| 7        | DAV202201     | Vitis vinifera L. cultivar Burger    | Napa              | 1935       | H. Olmo   | Leaves and petioles  |
| 8        | DAV202171     | Vitis vinifera L. cultivar Carignane | Sonoma            | 1937       | H. Olmo   | Leaves and petioles  |
|          |               | Vitis vinifera L. cultivar aff.      |                   |            |           |                      |
| 9        | DAV202870     | Merlot                               | Napa              | 1939-1940  | H. Olmo   | Leaves and petioles; |
|          |               | Vitis vinifera L. cultivar aff.      |                   |            |           |                      |
| 10       | DAV202872     | Gamay                                | Sonoma            | 1939-1940  | H. Olmo   | Leaves and petioles  |
|          |               | Vitis vinifera L. cultivar Grey      |                   |            |           |                      |
| 11       | DAV202227     | Riesling                             | Sonoma            | 1938       | H. Olmo   | Leaves and petioles  |
|          |               | Vitis vinifera L. cultivar Early     |                   |            |           |                      |
| 12       | DAV202860     | Burgundy                             | Napa              | 1939-1940  | H. Olmo   | Leaves and petioles  |

#### **Precautions to prevent cross-contamination**


- Extractions were conducted in an isolated lab (The Michelmore Lab)
- Samples processed with ALL new materials and reagents.





#### **GRBaV PCR Results**

- All herbarium samples were tested for GRBaV using both conventional and Quantitative PCR assays
- Only one sample found to be positive for GRBaV (sample #1)



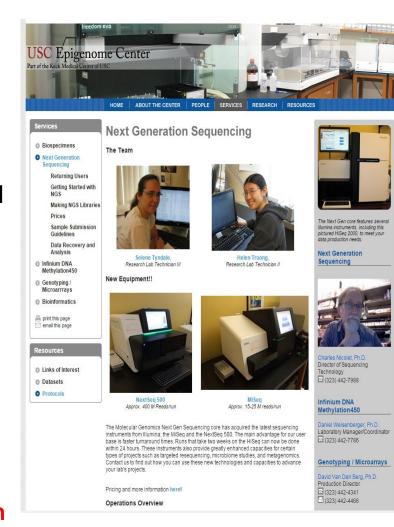
#### Sample #1

**Cultivar: Early Burgundy** 

**Location: Sonoma Collector: H. Olmo** 

Year of collection: 1940






What is Next: Genomic analysis

Obtain the full genome sequence of GRBaV herbarium isolate and compare it with the recently sequenced GRBaV isolates.

#### What is Next: Genomic analysis

- 0.1g of tissue was collected from the original specimen
- Total nucleic acid was extracted in an isolated lab and sent to the sequencing facility at the University of Southern California (They never worked with any grapevine material)
- NGS run generated about 88 million illumina reads
- More than 92,000 reads mapped against the GRBaV genome
- > The herbarium isolate shared 99% identity with other genebank isolates.



#### **Summary of results**

The results suggest that GRBaV was present in the Sonoma wine grape growing area for at least 74 years before the virus was identified and correlated to specific symptoms.



