INTRODUCTION
PLANT CHARACTERISTICS

As a general rule, plants require water, sunlight, and appropriate nutrients to thrive. Different plants have different specific requirements, but these three elements are universal necessities. Water is essential for hydration and the transport of nutrients throughout the plant. Sunlight provides the energy needed for photosynthesis, allowing plants to convert carbon dioxide and water into glucose and oxygen. Nutrients, such as nitrogen, phosphorus, and potassium, are absorbed from the soil or water and are crucial for plant growth and development.

Incorporating these elements into a practical plan for plant care involves understanding the specific needs of the plants in question and adapting care techniques accordingly. This may involve tailored watering schedules, appropriate light exposure, and the application of targeted fertilizers. Effective plant care not only leads to healthier, more vibrant plants but also contributes to a more sustainable and beautiful environment.

Methods that can be used for weed control include:

- **Pre-emergent control**: These chemicals are applied to the soil before the vegetation appears, preventing weed growth from seeds that are not yet sprouted. They are particularly effective in preventing the growth of annual weeds and are often used in areas where new planting is planned.

- **Post-emergent control**: These chemicals are applied to the foliage of weeds after they emerge above the soil surface. They are effective in controlling seedling and established weeds, and can be used in areas where new planting is not planned.

- **Biological control**: This involves the use of natural predators or pathogens to control weeds. For example, certain species of bacteria or fungi can be used to control specific weeds.

- **Mechanical control**: This involves manually removing weeds by hand, hoeing, or mowing. It is effective for small, isolated patches of weeds and can be a more sustainable option compared to chemical control.

Each method has its advantages and disadvantages, and the choice of method will depend on the specific situation and the desired outcome.
Not All Parallel, Veins Net-Like, Broadleafed

Parallel, All Veins, Narrowleafed

Identification

Knowledge of these more complex characteristics are necessary to recognize the

Two Grups

Over the years, these have led me to believe that some herbicides are effective on some

Correct Identification of Weeds was essential when weed control was

Adequate weeds are somewhat solid groups in their identification is

Another authority, you can control broad-leaved weeds, but can not control

Two groups would be: 1. Parallel. Stems with clear, dark, separate leaf

The broad-leaved weed group is the larger of the two and includes willows,

The broad-leaved weeds include all grasses other than blue grass, dandelions

These weeds are in the broad-leaved group.

Broad-leaved weeds in agriculture—there is no broad-leaved group.

These weeds are in the grasses other than blue grass, dandelions, and

Two broad-leaved weed groups are: Parallel and Net-Like

Parallel, All Veins, Narrowleafed

Correct Identification of Weeds was essential when weed control was

Adequate weeds are somewhat solid groups in their identification is

Another authority, you can control broad-leaved weeds, but can not control

Two groups would be: 1. Parallel. Stems with clear, dark, separate leaf

The broad-leaved weed group is the larger of the two and includes willows,

The broad-leaved weeds include all grasses other than blue grass, dandelions

These weeds are in the broad-leaved group.

Parallel, All Veins, Narrowleafed

Correct Identification of Weeds was essential when weed control was

Adequate weeds are somewhat solid groups in their identification is

Another authority, you can control broad-leaved weeds, but can not control

Two groups would be: 1. Parallel. Stems with clear, dark, separate leaf

The broad-leaved weed group is the larger of the two and includes willows,

The broad-leaved weeds include all grasses other than blue grass, dandelions

These weeds are in the broad-leaved group.
Methods of Weed Control
Let's reduce self-maintenance depletion by annual weed control. Physical control methods include any technique that reduces plants, such as hand weeding or burning, or use of herbicides.

<table>
<thead>
<tr>
<th>Physical Control Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeds on the Face Leaves</td>
</tr>
<tr>
<td>Weeds on the Side Leaves</td>
</tr>
<tr>
<td>Weeds on the Root balls</td>
</tr>
<tr>
<td>Weeds in the Soil</td>
</tr>
<tr>
<td>Weeds on the Ground</td>
</tr>
</tbody>
</table>

Control Organizations

Example of biological weed control in California:

- Weed control by biological means is a viable option for reducing the need for chemical weed control and improving the environmental impact of weed management. In California, biological control methods include
 - Biological control agents, such as nematodes or fungi that specifically target weed species.
 - Release of natural enemies, such as parasitoids or predators, to control weed populations.
 - Genetic modification of crops to make them more resistant to weeds.

Biological control methods:

- Are environmentally friendly and reduce the use of synthetic chemicals.
- Are specific to the target weed, minimizing harm to non-target species.
- Can be used in conjunction with other control methods to provide a comprehensive weed management strategy.

Key terms and concepts in the biological control of weeds include:

- Biological control agents: organisms that are used to control pests.
- Host specificity: the extent to which a biological control agent is effective against a specific weed species.
- Integration: combining traditional control methods with biological control to achieve optimal weed management.

In conclusion, the use of biological control methods provides a sustainable and effective approach to weed management, contributing to the conservation of natural ecosystems and the health of agricultural landscapes.
The diagram (Figure 2) shows how the sequence of physical interactions is

In the diagram, the process of applying the procedure to a control valve is illustrated. The valve is initially in the open position, and the fluid flows through it. As the procedure is applied, the valve starts to close, and the flow rate decreases. The process continues until the valve is fully closed, and the flow is stopped.

In the next phase, the control valve is opened again, and the fluid flows through it. The process is repeated until the valve is fully closed.

This sequence of opening and closing the control valve helps to control the flow of fluid accurately. The diagram provides a clear visual representation of the process, making it easier to understand.

The theoretical understanding of the procedure is explained in detail in the accompanying text, which discusses the physical principles involved in the operation of control valves and the role of the procedure in achieving precise control.

The procedure can be applied to various types of control valves, including globe valves, gate valves, and ball valves. The application of the procedure depends on the specific characteristics of the valve and the fluid being controlled.
TABLE 7. Herbicide Tolerance of Crop Varieties to Herbicide Application Rates and Timing

<table>
<thead>
<tr>
<th>Herbicide Tolerance</th>
<th>Rate (oz/acre)</th>
<th>Timing</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPTC (Grams)</td>
<td>High</td>
<td>Early</td>
<td>High</td>
</tr>
<tr>
<td>triclopyrine</td>
<td>Medium</td>
<td>Late</td>
<td>Medium</td>
</tr>
<tr>
<td>chlortoluron</td>
<td>Low</td>
<td>Any</td>
<td>Low</td>
</tr>
<tr>
<td>glyphosate</td>
<td>Very Low</td>
<td>Any</td>
<td>Non-tolerant</td>
</tr>
</tbody>
</table>

Note: Higher tolerance indicates less sensitivity to herbicide application.

Soil Matric Potential vs. Herbicide Application Rate

- EPTC (Grams): High rate applied in early timing results in high tolerance.
- triclopyrine: Medium rate applied in late timing offers medium tolerance.
- chlortoluron: Low rate applied in any timing shows low tolerance.
- glyphosate: Very low rate applied in any timing results in non-tolerance.
In some crops, an increase in resistant annual weeds can be corrected by adequate annual weeds. Table 3 shows examples of annual weeds resistant to glyphosate herbicides.
The control of annual weeds (e.g., red pigweed, Palmer amaranth, and johnsongrass) is a significant challenge in agriculture. Non-selective herbicides are often used for broad-spectrum control of mixed annual weeds. Resistant annual weeds are controlled by the normal rates used for broad-spectrum herbicides. Soil-applied herbicides are often used for broad-spectrum control of mixed annual weeds. Adjacent security is critical. There are specific annual weeds. Again, security is critical. This is a significant challenge in agriculture. Non-selective herbicides are often used for broad-spectrum control of mixed annual weeds. Resistant annual weeds are controlled by the normal rates used for broad-spectrum herbicides.
A. Water-soluble formulations (WSF) - these are water-soluble powders that dissolve in water.

B. Micellar formulations (MF) - the active ingredient is mixed with a surfactant that forms a solution in water, thus remaining liquid after application.

C. Micronized (M) - the active ingredient is mixed with a carrier to increase its solubility in water.

D. Micellar formulations (MF) - the active ingredient is not soluble in water, but can be suspended as fine particles. These micellar formulations require surfactants to aid the process.

E. Micronized formulations (MF) - the active ingredient is not soluble in water, but can be suspended as fine particles.

1. Aqueous solutions: prepared as clear, colorless, and odorless liquids.

2. Aqueous formulations: prepared as liquids that can be applied directly to the skin or mixed with water for a spray or mist application.

Formulations:

- Micellar formulations (MF)
- Micronized formulations (MF)
- Micronized formulations (M)
- Micellar formulations (W)
- Aqueous solutions (WS)

Note: Powders (dry) of herbicides are not used because of the dirt they cause.
The non-electrolytes are more common in aquatic plants because they are formed from plant and water conditions prevalent.

Advantages

- Do not require a charge
- Non-ionic
- Cationic
- Anionic
- Neutral

Advantages:

- Better wetting
- Improved detergency
1. 20 ft. × 0.1212 = 2.42 acres/mile × 5 miles = 12.1 acres
 Chart A = 12

2. 800 ÷ 16 = 50 gal./acre. Chart B = 50 gal./acre.

3. 1 1/2 hours = 90 minutes
 800 ÷ 90 = 8.9 gal./min.

4. 8.9 ÷ 12 = 0.74 gal./min.

5. 120 ÷ 25 = 4.8 mph.
 0.8 × 60

6. 8 = 6.0 mph.

7. 16 × 0.1212 × 3 = 5.8 acre. Chart A = 5.75 acre.
 330 ÷ 5.3 = 65.9 gal./acre. Chart B = 58 gal./acre.

8. False

9. False

10. True

Calibration Questions

1. The flow in 60 minutes is...

2. If 100 hours to apply 800 gallons, what was the rate of discharge from the nozzles?

3. If 800 gallons were applied over 16 acres, what was the rate of output in gallons per acre?

4. A spray at a width of 20 feet for 5 minutes. How many acres were sprayed?

5. A spray at a width of 20 feet for 5 minutes. How many acres were sprayed?

Calibration Information

- They decrease the cost of the herbicide application.
- A 2-inch nozzle diameter with dual nozzles discharge rate in gal./min.
- Doubling the nozzle discharge rate will double the nozzle discharge rate in gal./min.
- Doubling the pressure will double the nozzle discharge rate in gal./min.
- Increasing the speed will increase the gal./ace.

Examples

- 1. 10 ft. 2. 9 ft. 3. 8 ft.
- A 12-foot width was sprayed for a duration of 5 minutes with a nozzle discharge of 200 gallons/hour.
- In another 6 ft. in a field, a spray the traveled 0.8 miles in 5 minutes. What is the speed?
- In another 6 ft. in a field, a spray traveled 0.8 miles in 5 minutes. What is the speed?
- A sprayer is 12 seconds to travel 176 feet. What was its speed in mph?
- How fast was the boom in Question 3? What was the discharge rate?
- The use of dead oil or light mineral oil as a carrier can greatly increase the activity of preemergence herbicides. How much oil is required for an application of 200 gallons per acre and how many acres can be treated?
In day 10 would contribute for the higher absorption capacity.

<table>
<thead>
<tr>
<th>Type</th>
<th>Absolute Activity</th>
<th>Moderate Activity</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>Moderate activity</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Very high</td>
<td>Moderate activity</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Moderate activity</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 9: SOIL TYPES IN RELATION TO HABITABLE ACTIVITY

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.

Chlorine: Condition, Absorption and Distribution of Chemicl Activity

We have seen the importance of good practice in the control of water and soil conditions. The control of the spread of chlorination is crucial in the habitable activity.

Introduction:

The following discussion will explore the relationship between soil types and the effect on the habitable activity.

The following table shows the relationship between soil types and their effect on the habitable activity.
The page contains text in English, discussing various topics, but the content is not legible due to the image quality. The text appears to be a scientific or academic document, possibly related to environmental or ecological studies. However, without clearer visibility, it's challenging to extract meaningful information or context from the page.
Persistence in the environment. Herbicides, particularly solubilized herbicides, are applied to control weeds in areas where some portion of the environment may be free of plants or where applied to control or disrupt the growth of weeds. It is common for these herbicides to be applied to aquatic systems, such as lakes, ponds, or streams. These herbicides are effective in aquatic systems because they can be absorbed by the aquatic plants and can be transported through the aquatic environment. In addition, these herbicides can be transported through the aquatic environment by wind, waves, or currents. The effectiveness of these herbicides in controlling aquatic weeds is often enhanced by the use of adjuvants, which are substances that improve the effectiveness of the herbicide. The use of adjuvants can also help to control weeds in aquatic systems that are difficult to treat with traditional herbicides.
Glossary of Terms Used in Weed Control

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abatement</td>
<td>The process of reducing or eliminating weeds</td>
</tr>
<tr>
<td>Absorption</td>
<td>The process by which herbicides are taken into plants by roots</td>
</tr>
<tr>
<td>Aquatic Plants</td>
<td>Plants that grow in water</td>
</tr>
<tr>
<td>Resistance</td>
<td>The ability of weeds to become resistant to herbicides</td>
</tr>
</tbody>
</table>

TABLE 10. Example of the relation between herbicide persistence and soil conditions

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Persistence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay soil</td>
<td>High</td>
</tr>
<tr>
<td>Sand soil</td>
<td>Low</td>
</tr>
</tbody>
</table>

Reference:clockwise;Handbook;Weed Society of America
Volatilization—The evaporation of vapors from the face of application to the air.

Vapors—The compound is mobile when evaporated or volatilized (changes state).

Weathering—The compound that will readily form a suspension in water.

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A property that resists exposure to the weather.

Water—A compound that is mobile when evaporated or volatilized (changes state).

Waterproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.

Weatherproof—A compound is mobile when evaporated or volatilized (changes state).

Weatherproof—A compound that is mobile when evaporated or volatilized (changes state).

Weatherable—A power that will readily form a suspension in water.